Restricted Dumont permutations, Dyck paths, and noncrossing partitions

نویسندگان

  • Alexander Burstein
  • Sergi Elizalde
  • Toufik Mansour
چکیده

We complete the enumeration of Dumont permutations of the second kind avoiding a pattern of length 4 which is itself a Dumont permutation of the second kind. We also consider some combinatorial statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that uses cycle decomposition, as well as bijections between 132-, 231and 321-avoiding Dumont permutations and Dyck paths. Finally, we enumerate Dumont permutations of the first kind simultaneously avoiding certain pairs of 4-letter patterns and another pattern of arbitrary length.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Combinatorics Related to Central Binomial Coefficients: Grand-Dyck Paths, Coloured Noncrossing Partitions and Signed Pattern Avoiding Permutations

We give some interpretations to certain integer sequences in terms of parameters on Grand-Dyck paths and coloured noncrossing partitions, and we find some new bijections relating Grand-Dyck paths and signed pattern avoiding permutations. Next we transfer a natural distributive lattice structure on Grand-Dyck paths to coloured noncrossing partitions and signed pattern avoiding permutations, thus...

متن کامل

Pairs of noncrossing free Dyck paths and noncrossing partitions

Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.

متن کامل

Some order-theoretic properties of the Motzkin and Schröder families∗

Our starting point is one of the main results of [BBFP], which we are going to recall in the next lines. Denote by Dn, NC(n) and Sn(312) the sets of Dyck paths of length 2n, noncrossing partitions of [1, n] and 312-avoiding permutations of [1, n], respectively, where [1, n] is the set of positive integers less than or equal to n. For our purposes, the following notations will be particularly us...

متن کامل

Combinatorial statistics on type-B analogues of noncrossing partitions and restricted permutations

We define type-B analogues of combinatorial statistics previously studied on noncrossing partitions and show that analogous equidistribution and symmetry properties hold in the case of type-B noncrossing partitions. We also identify pattern-avoiding classes of elements in the hyperoctahedral group which parallel known classes of restricted permutations with respect to their relations to noncros...

متن کامل

Rational Associahedra and Noncrossing Partitions

Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006